Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Biol Med ; 145: 105491, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773224

ABSTRACT

The paper proposes a graph-theoretical approach to auscultation, bringing out the potential of graph features in classifying the bioacoustics signals. The complex network analysis of the bioacoustics signals - vesicular (VE) and bronchial (BR) breath sound - of 48 healthy persons are carried out for understanding the airflow dynamics during respiration. The VE and BR are classified by the machine learning techniques extracting the graph features - the number of edges (E), graph density (D), transitivity (T), degree centrality (Dcg) and eigenvector centrality (Ecg). The higher value of E, D, and T in BR indicates the temporally correlated airflow through the wider tracheobronchial tract resulting in sustained high-intense low-frequencies. The frequency spread and high-frequencies in VE, arising due to the less correlated airflow through the narrow segmental bronchi and lobar, appears as a lower value for E, D, and T. The lower values of Dcg and Ecg justify the inferences from the spectral and other graph parameters. The study proposes a methodology in remote auscultation that can be employed in the current scenario of COVID-19.


Subject(s)
COVID-19 , Signal Processing, Computer-Assisted , Auscultation , Humans , Lung , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL